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1. Introduction,

It scoems worlhiwhile to con;idcr a theory of periodic procewscs
of sufficient penerality thul it can be applicd to dynmmical symL?mn Ao
fined by partial differcntial equations (distributed parametor systowms),
functional differential eguations {bereditary systems), systoms arising

in the theory of elasticity, etec. A large nuwber of examples of such
dynamical systems and morc complete references can be Tound in the papevr

[1] by Hale. There the principal objeclive was to oblain a geuerslized
invariance principle and to exploit this invariasnce to obtain a general sta-

bility theory. Hale's work was extended in [2] to periodic dynamical sys-

tems by Slém;di and Dafermos in'fij gave an invariastce principle £or
pact processes which include periodic processes, Some recent applications
of this general stability theory can be found in [4]-[7].

The objective of this paper is to develop in the spirit of the
work above a general end meaningful theory of dissipative periodic systems.

Nonlinear ordinary differential equabions which are periodic and dissipative
¥y P P

were studied by Levinson [8] in 194k, More generzl results for ordinary

differentizl eguations one studies the iterates of e map T of o state
space into itself where the map T 1is topological and the space is loc-
ally compact (n-dimensionzl Euclidean spzce), However, for the applica-
tions we have in mind the solutions will be unique only in the forward

direction of time and the state spaces are not locally compacl. Because
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3 ABCTRACTY

The ohjective of this paper is to develcp a general and meaningful theory of
dissipative periodic cystems, For ordinary periodic differential equations one
studies the iterates of a map T of a state space into itself where the map T is
topological end the spoce is locally compact {(n-dimensional Buclidean space).
for the applications the suthors have in mind, the solubicns will be wnique only in
the Torward direcbion of time and the state spaces are not locally compact, PBecause
of this generalization of the results for ordinary differential eguabtions is by no

means trivial,

ic processes on Banach spaces are develcped

in Sections 2 and 3 or L= paper, iow this applies to retarded functional diflerentls

equations of vetarded Lype is dipcussed in the fovrth section, Two sufficient con-

ditions for dissips “nene are given in terms of Liapunov functions., They formalize
the intuitive notion Lhial many systems for large displacements dissipate energy.

plication of thesc resnlbs is illustrated ot the end of Scebicn b,

[
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of this the gencralization of the results for ordinary diffcerential equu-
tious is by no mesns trivial.

The basic theory of dissipative periodic process on Bunach sproes

‘is developed in Sections 2 and 3. How this applies to retarded functional

differentinl equations of returded type is discussed in Section 4. Two
sufficient conditions for dissipativeness are given in terms of Liapunov
functions., They formalize the intuitive notion that many systems for large
displacements dissipate energy. How these results can be applied is il-

lustrated at the end of Section L.




2, Diegipative mupplugs,

Let R denote the renl numbers, R+ the nonnegative reals, and

.

Jet X be a Banach space with norms . Consider a mapping us R X X X

RY > X and define (t,T)s X =X for.each t ¢ R and each 7 ¢ r* by

(t,1)x = u(t,x,7). < (2.1)

Interpret (%,1)x as the state of the system at time t+4T if initially
the state of the system at time t was x, A process on a Banach space

X is a mapping us R X X X R" - X with the following propertiess

2.1. u is continuous
2.2, (t,0)x = x

2.3, (t+o,7)(t,0) = (t,0+1).

Thus a process here 15 essentially what was called in [2] a "generalized
nonautonomous dynamical system” and differs by the continuity condition
on u from what was called a process in [3].

A process is sald to be periodic of period w >0 if (t+w,T) =
(t,7) for all ¢ ¢ R and all T ¢ R+. For any fixed t € R there is then
associated with » periodic process a continuous mapping T: X — X defined

by

T(x) = (t,w)x.

with 1" the 2™ iterate of T it follows from (2.3) that Tn(x) =

(t,nw)x and the sequence Tn(x), n=0,1,2,. is called the (positive)
motlon or orbit through x. Since for a periodic process (L), T4k} =
(t,7)(t, k), we see that the fixed points of ‘l‘k correspond to periodic
motions of the periodic process,

Thus motivated we will now spend the rest of this séction study-

ing the discrebe dynamical system defined by an arbitrary continuous mapping

T: X =X where X 1is a Banach space., We select a Banach space because we
use the Schauder fixed point theorem and the property that the closed convex
hull of a compact set is compact for Corollary 3,1, which is the principal

result. A point y 1s said to be a limit point of the motion Tn(x) if
! n

‘“there exists a subsequence o, of integers such that o, = and T k(x) -y

as k - o, The limit set IL(x) 4is the set of all limit points of T (x).

Note that

Wx) = n cl U Tx), (2.2)
j=2 n=j

where' Cl is closure,

A set MC X is said to be positively invariant if T(M) C M

and negatively invariant if M C P{(M). It is said to be invariant if

T(M) = M; i.e., if it is both positively and negatively invariant. Nega-

tive invariance and the axiom of choice implies the existence on M of a



Sy s -1 n
right inverse @ to T, Hence we have- P. defined fov 1) integers b

(vhen o ismegative ¥ = (1™ with the property tret TFY . g g

Tor all nonnepative integers k and Je Thus negative -yr

rlances implies
the existence of an extelnlsion over all integers of cach positive motion through
a point of M and the negative extension is contained in M. Although the
fellowing lemma is essentially conbained in 13}, [23, and [3], the proof

for the case of discrete motions is especlally simple end is included,
Essentially the same prool aiso yields the generalization given in Lemma

3.1

Lomme 2.1. If the motion 17(x), n = 0,1,2,... is precompact, then the
limit set L{x)} is nonempty, coampact and invariant.

Proof: L{x) is the'intersectio(r%.ozfj a descending sequence of nonenplty camu-
pact sets and is therefore Aonempty and compacf. The continuity of T im-
plies I{x) is positively invariant. Let 'y € L{x), Then there exists
s sequence of integers ny such that nj -+ w .and Tnj(x\ =Sy as j ow,
We can by the precompactness assumption select a subsequence, which we still
label a5 such that Tnj—l(x) —z as ko, Now z e L{x), and T{z) =
lim Tnj(x)' = y by the continuity of T, Hence L{x) C P(L{x)) which
io;p‘zetes the proof. Taking T—l(y) =z gives a right inverse of T on

I(x).

For most applications o‘k;,her than ordinary differential equations
the state space X is not locally compact and there is the practical giffi-
culty c;i‘ determining compactness. TFor many processes T smooths the initial
data_and with switable topologies for the state spaces boundedness of the
motion implies that the motion is precompact (see, for example, [1]}. Intui-
tively one expects from energy considerations that real processes will be

dissipative for large displacements and the notion of dissipativeness is

. naturally associsted with boundedness., " With applications in mind we develop

a theory of dissipative processes based on boundedness and require z smooth-

ing property stronger than that mentioned above.

Definition 2.1, T is s8id Yo smooth if there is z nommegative integer



Y such thul ror each bounded zot 2 in X there is w compuet sot B*  in

X such thet U (x) € B for n=0,%,...,8 implies T(x) ¢ B* for n =

n.,n

o +Llyens N

o]
For ordinary differential equations every continuous - T ‘smooths
with oy = 0 and for retarded functional differential eguations T smooths

with B > r, the retardation. If T carried bounded sets into bounded

sets, then Definition 2.1 would imply that Tn is compact for n 2 By
However, even for retarded functional differential equations T may not have

this property (for an example see [17]).

Definition 2,2. T is dissipative if (1) ‘it smooths and (2)- there is a
bounded set B in X with the property that given x ¢ X there is a
positive integer WN(x) such that T(x) ¢ B for N(x) €n = N(x)+n,.

It is convenient to note first the following simple result.

Lemma 2.2, If T dis dissipative, then there is a compact set Ko in X
such that given x e X there is a positive integer n(x) and an open
n{x)

neighborhood O}_ of x with the property that T (0) © X, -
: x

Proof: = We may always assume that the set B in Definition 2,2, is open,
] (Definition 2,1).
Taking B to be open, we define K0 = B*A Then by continuity of T there
is an open neighborhood 0 of x such that TU(0 ) CB for N(x) s
n £ W(x)+n.. Let n(x) = N(x)+n. . Then T“(x)(o)\) CB* = K, which com-
5 3 [+]

pletes the proof,

We now show that ir ¢ is dissipative, then the disslpaliveness
is uniform on compact sets in that there is a compact set X with the
property that eventually the motion of each compact set is iu K. T}zni:stlre—
sult generalizes Theorems 2.1 and 2.2 of [10] and here the proofs are/?si:npler
and direct, If the space is localiy compact (ordinary differential equa-
tions), then every continuous T smooths and T is dissipative if there is
& bounded set B such that for each x € X there is an N(x) such that
TN(X)(X) € B. If the space is not locally compact, the assumption that T

smooths is needed and for each x € X the motion Tn(x) must remain in

B long enough to smooth.

 Theoren 2.1. If T is dissipative, then there is a compact set K in

X with the property that given a compact set H in X there is a posi-

tive integer N(H) and an open neighborhood O, of H such that Tn(o ) CK

b4
for all un z N(H).

_Lféé_f_‘; Let K, be the compact set of Lemma 2.2 and let H be zny compact
set in X. Then for each x € H there is an n(x) and an OX such that
Tn(x) (Ox) C Ko. Selecting from this open covering of H a finite cover-
ing, ve see that there is an n(H) such that for each Ox of the finite
covering there is an 4 = i(x) such that 1 £i s n(H) and Ti(ox§ CK_.
Hence ‘all‘that we need do 1o prove the theorem is to show that there iz a
positive integer N(Ko) and a compact set K such that Tn(Ko) C K for all
nz N(Ko). Let x € Ko and let n be any positive integer greater than

or equal to n(Ko). There bis then a least integer J, 0 5 § £ n such that
Tn-‘j(x) € K, and ph-k £ K, for 0 £k<j. It follows by what was shown
at the beginning of the proof that 0 £ j s n(KO). Hence Tn(x) iz con-

tained in the wiion K of X, T(Ko),...,Tn(K°)(KO), which is compact and



2-6

The principal resull is now an immediate couseguence of Theorem 2,1
which implies that every smooth, dissipative periodic prozess has s periodic

solution,

Corollary 2.1, If T is dissipative, then there is an integer k such

that T has s fixed point for each 10 2 k,

Proof: Since in a Banach space the closed convex hull of a compact set is
compact, we may assume that the X of Theorem 2.1 is compact and convex,
Then Tn(l() C X for each n 2z N(K) and by the Schavder fixed point theorem
cach such T° has a fixed point.
There 1s a very special class of dissipative systems where T
has a unique fixed point., For a topological map T and hence for periodic
ordinary differential equations a result of this type was given in [11]
(Corollary 2). (For ordinary differential equat::.ons see also [10] and for retarded
functional differential equations see [12].)

Definition 2.3, T is said to be extremely stable if (1) there is a bounded
motion 2,02} 000, T, ...  and (2) Iy - ™) -0 as n-w for

each x,y‘e X.

Corollary 2.2, If T is smooth and extremely stable, then T has a (uni-

que) fixed point and all motions approach this fixed point as n — o,

Proofs Bince T whooths, the bounded motion is precompact, Let L  be

its nil srt, which by Lemma 2.1 is nonempty and compact. Since

2w

" P 4s extromely stoble, every solution approaches L as t = {all solu-

tions have L as their positive limit set), and therefore T is cer-
tainly dissipative. By Corollary 1 we have Tkx = x for some positive k
and s§m8 x. Since T(x)-x = Tnk(’l‘(x\) - Tnk(af) for m = 1,2,.,., it
follows from (2) of Definition 2j that '.L‘(x) = x, Hence L = {x) and
the proof is complete,
In Section 3 we show thﬁt the fixed point is globally asymptotically

stable (Theorem 3,2V,



3.1

kA

%, The limit set T,

We wlah now to show ilhat if T is dissipatiye then there is a
compact invarisnl set I that is globally asymptotically stable. Just
as in [8] for second order ordinary differential equations I will be the
maximum compact set invariant under T,

Let K be the compact set of Theorem 2,1, Define
® ka3
I= 07T{K .1

0f course, K is not unigue, but it is not difficult to see that I doerg

. not depend upon K. Let Kl be any o‘thex; émi;act set wi‘;h the same property
(Theorem 2,1) that X has and let I(K.\ be the set defined in (3.1).

Then for all n sufficiently large Tn(K) CK and Tn( Kl) C K. Hence
I(Kl) = I(Kz). Similarly it is easy to see that if 0y is any sequence

of integers such that nj o as j - o then

e n
I=n7T%K (3.2)
j=0- .

and, in particular, for n, = n(K) ) -

© jn
I= 0T
3=0

Lx). (3.3)

n
It is Interesting to relate I to the motion X, T(K),...,T (K)
Given a set H 4n ¥ we define L(H), called the 1limit set of the motion

through H, by

Iree o

[§*
]
)

[-~] oo
(® = ncl v,
j=0  n=J
where Cl1 denotes closure. Then y ¢ L (H}) means there exist sequences 0
! n,
and y; ¢ H such that n; - and T l(yi) -y as 1 -w, Thus when H
is a single point x <his is the usual limit set L{x). Now just as for

Lemma 2.1 we obtain

o«
Lemna 3.1. If for some j sufficiently large U Tn(H) is precompact,

n=j
then the limit set L(H) is nonempty, compsct, and invariant,
Thoerem 3.1. Assume that T is dissipative. Then I = L(X) and hence

I 1is nonempty, compact, invariant and is the maximum invariant set in X.

Proof: Clearly I CL{K). To prove the converse consider any y ¢ L(K).

Then there is a sequence of integers ni and a seguence %5 € K such
n,

that T l(xi) -y as 1 -, For any positive integer j we know that

Tn_‘](xn) ¢ X for all n sufficiently large (Theorem 2,1), Therefore for

the sequence X, we may assume that yi = Tni—a(xi) —>yj e K as i-w

for any positive integer j. But clearly then Tj(y‘j) =y and this implies
y € I. Hemce I = I(K) and by Lemma 3.1 I is nonempty, compact and invari;
ant. ‘If M 1is any compact invariant set, then it follows immediately from

Theorem 2,1 that M is in I. This completes the proof,
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We ypeenll that & sct M is a global attracter if Tn(x) M as
n —»o for each x € X. Since each motion T° (%) is precompact (Theorem 2,1)
and its limit sel I(x) is nonempty, compact and invsrient (Lamna 2,1), it
follows from the above theorem that L(x) dis in I for each x € X, Hence
I is a global attractor, For & >0 let MS dénote the &-neighborhood
of M (ME’ = {ys Jy-x] <& for same x ¢ M}). A set M is said to be
stable if given & >0 +there is a 8 >0 such that x ¢ M6 implies that

Tn(x) € Ivie for all n % 0. If the set M 1is both stable end a global

attractor it is said to be globally asympto;hical_ly stable. By an argument

similar to that used by LaSalle to prove Theorem 3 in [13] we obtain

Theorem 3.2. If T is dissipative, then the set. I.1s globally asymptoti- ~

cally stable.

. ‘Proof;’. We pointed out above that I is a global attractor and we need only

show that I is stable.

Let us observe first how T being dissipative enters the proof.

Suppose that yJ. =Yy €1 and relative to this sequence define

={z; 7T J(yj) =z as j - forvsome seqience n,, z not in  I}.

3

n, :
In the remainder of the proof T J(yj) =z as J -, z £1, Since I

is compact, given gz ¢ v, there is an & >0 and an €-neighborhood Ie of
I such that (1) 2z is not in the E-neighborhood IE' of ¥ and (2)

e .. . '
I” is in the open neighborhood 0y of Theorem 2,1,

Since T is continuous aud I 1s invariant, then given any integer k we
know that Tn(yj\ € Ie for O & n %k and all J sufficiently lerge. This
imiwlies that n‘j -3 as‘ g - w, Note by Theorem 2.1 that thislai.sct implies
that each such sequence T ‘j(yj) isin X for sufficien’clyZégg there-
fore 7y C K. Using the standard diagonalization procedure, it is easy to see
that 71 is closed and hence 7y is compact. We will now sho: tiat Y is in-
variant. Clearly T{7) C v. Given z ¢ v the seguence T i (yj) is pre-
compacts If o is a limit point of this sequence, then Tw) =2z and we 7o
Hence yC T(Y), and 7 is compact and invariant. Therefore by Theorem 3.1
the set y must be empty since y is not in 1.

We now use this to show +that I is stable.  Assume that I is
not stzble. Then there exists for some e > 0, vhich ;we can rake as small
as we please, sequencersl rlxj and v; such that Y5 =1 as j -, Tn(yj) €
I, 0ns na, and T ‘3+ (y ) is not in Ie Since I is compact, we may
assume that yJ. —»y el as J - Otherwise, we know that there arev Z,j [
such ‘that “yj-zjn -0 as J o« Then we could select a subsequence z
with limit y, and clearly A j -»». As before we ¥now that

23
J(y } is precompac't and we may assume by again selecting a subseguence

_if necessary that T '](y Y2z as = Smee T(z) is not in 7 , it

is not in I, and therefore z is not in JT. But then z ¢ 7, and this con-

tradiction completes the proof.



ko Retarded functional differcniiunl cquationse

We examlne bricfly how Sections 2 and 3 can be applied to retarded
functional diffcerential equations. Let Rn be & real n-dimensional vector
norm n.
space withfi|+|. Given r >0, ¢ = ¢([-r,0),R) will denote the space of
continuous functions ¢ mepping [-r,0] into R° with o]l =
sup{e(8); -r £ 6 £ 0}. Let f be a continuous function taking R X C

into Rn. A retarded functional differential equation is a system of the

form

i(t) = f(‘t,xt), (l{“l) .
where % 1is the derivative of x and X, € C is defined by xt(e) =
x(t+0), -r 56 5 0. A function x mapping [t -T,ty+a) into " is said
to be a solution of {k,1) on (to,to+a) with initial value @ € ¢ at t

if x bas a continuous derivative on [to,to+a) satisfying (4,1) and

A brief survey of the history of functional differential eguations
is given in [1k], For general theorems on existence, uniqueness, continuation
and continuity see [1], [4], [12] or [15]. These theorems are quite similar
to those for ordinary differential equations, and we make the general assump-
tion that £ solisfies, in addition to the continuity condition above, condi-
tions sufficient 4o insure uniqueness of solutions to the right, We shall also
assume that the pplution x(t,fogm of (4.1) satisfying xto(to,cp) =@ is
defined for all ¢ z t_. This will be implied by dissipativeness. Then

0
u(to,%r) = XtO*T(LO’m) is, as described in Section 2, a process on the

42

(1)
Banach space C. We shall asswume also/\f(t,cp) is periedic in t with

2
period w >0 and‘(/\} maps bounded sets of R X € into 2% If x{t) is

0]
]lxtﬂ <a for t e [{‘.Q-Hz',to+T)° Thus corresponding to each bounded set B

any solution of (4. 1), we sec that |x(t)] <b for t ¢ [to,® +T)  implies

in C +there is = compact set B* in C  such that %, € B for t e [to’t0+m
implies ¥ € B¥ for 't e[to+r,tO+T). This smoothing of the initial data

was exploited by Hale in [1] although he did not use and did not need a
smoothing property as strong as this one,. Defining T(¢) = xto+d)(to,<;))

for any fixed to, we see that T smooths in the sense of Definition 2.1

with no the least integer such that now >r, We see also that T will be

dissipative if ‘there is a number b such that given @ € C there is a tl

t £ t.+n o,

tl(cp,to) with the prop;rty that ]x(t,to,cp)[ <b for all t, = 147G

Just as with ordinary differential equations one can give in terms
of a Iiapunov function necessary and sufficient conditions that there exist

= tl((p,to) with the property

a2 b such that given @ ¢ C there is a tl

that |x(t,to,tp)| <b for all tz+4, (see[10]). Here we confine our-
selves to stating two sufficient conditions, These conditions and the proofs
that they are sufficient are similar to the conditions and proofs
for uniform asymptotic stability gilven in [16] (Theorems 11.1 and 11.2),

Let V be a continuous mapping of R X ¢ into Rn. Define rela-

tive to solgt;ons x(t,to,qﬂ of (4.1)
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Yoy = TE R [V(teh,x, (6,0)) - V(6,9

% =0 4+h

The function 1 satisfies the same conditions ass before and the mapping T
is defined above.

If

(1) ule(0)) = v{+,9) = v(lloll) where u apd v are continuous and
U(S) - © is_ 5 -,

(2) V(t,p) < -& for all t and |®(0)] >b, then T is dissipative.

If v(%,x) is a continuous mapping of R X E® into. Rn, then {I(t,x(t))
(x(t) continuous on [t-r,t]) is defined by {I(t,x(ﬂ) = V.I(t,xt), where
W(t,9) = ¥(£,0(0)). Ancther useful sufficient condition in terms of v{t,x)
is

Ir

(2) u{lx]) = v(t,x) = v(]x]), where w apnd v are continuous and
u(s) 2= as s =,

(b) ¥(t,x(t)) S £ <0 for all t >0 and all x(t) satisfying

[x(6)} >p and
V(E,x(E)) < g(V(%,x(t)), on [t-r,t]

where g(s} -is continuous, nondecreasing and g(s) >s for s>a >0,

then T is diasipative.
LT 2 fAfiELparive

We illustrate these results by siméle one-dimensional exempies {see [16]
where all the examples on uniform asymptotic stable varied slightly give examples

of dissipative functional differential equations),

holy

Example 1. Consider the one-dimensional linear system

) = —ax(®) - b(H)x(t-r) + e(t)
where r >0, a >0, b(t) and e(t) are continuous and periodic of period
@ L€t B be the amplitude of b(t) (the maximum value of |b{t}}) and
let E be the amplitude of e(t). With V(g) = ;‘—atpa(o\ + p_ﬁ@a(e)de
then for any solution Xy

Wy = -0 - EE(0)1x(tor) - (6 + Ze(o)x(o).

The first three terms are a guadratic form and we see that

. 2 1

V(xt) s -ox (%) + z e(t)x(t)

ity 22
u <1, or, taking 2p = l-g,pb (%) < {1-aV7a7,
/

A

v2(4)
L)
a

O<osl. Thus with B < ka

if W(i-g-pip > » 0

. 2 E
s - - s .
V(xt) % () 1-n W ),Q o] A< L

E -
Hence, if |x(t)| >8 g emnri ¥(x,) € -€ <0. Clearly (1) and (2) sbove
are satisfied and the system is dissipative, In fact, since the system is
linear, it is extremely stable (Section 3) and has a unigue periodic solution

of pericd o that is globally asymptotically stable (a steady state solution).
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A more detailed analysls shows I B < An, 0 & 2 < 1, that the amplitude of the
periodic solution Ls not greater than Z%yg\fld-a s, This suggests it can

be expected thal the amplitude may increasc as a decreases, as B increases,

or as the delay increases. As r — 0 the result is the best possible,

Example 2, Consider the one-dimensional system
x(6) = £(t,x(t-v(t)) + e(t), 0 5 {t) s ¢ (4.2)

where £, v, and e are continuous and f(tm,x) = f(t,x\’ (t+) = y{t)

and e{t+w) = e(t) for all t and x. We assume moreover that f has

& continuous partial derivative f, = %}f-(- such that [fz(t,x\! <L for all

t and all x. ZEquation (4.2) is then equivalent to
R(6Y = £(t,x(%)) + [x{t-7{t)) - x(t)]fe(t,x(e(t\,\ + e(t),
where t-r < 8(t) < t. Define 2V(x) = x2. Then for any solution x(t)
x’zg(«m = % (D 2(6,5(0) + ((Oa(e-3(6)) - x()15,(6,%(6(+)) + e(£)x(t).
For those solutions satisfying

¥(6-t) 5 G.xz(t), 0sesr. g>1
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e(t) ]

W = 2D g+ [

Hence, if for all t and all |x| >p

—ﬁ-—f-—f:"‘)+21,§-<x<o,

then (a) and (b) above arc satisfied with g(s) = gs, g > 1, and the
system (%2)is dissipative, If £(%,0) <0, then a similar argument shows that

it is dissipative if
£(—§Ly-’l-+ Ly(t) £ @ <0
for all t and all |x| >p. For the linear system (a(two) = a(t))

$(1) = —a(t)x(t-7(t)) + e(t),

V() = -a(t)x(t-1{E))x(t) + e(t)x(t).

If O <a<a(t), then the same argument shows that the system is dizsipa-
tive and therefore extremely stable, Here one can easily see that the ampli-
tude of the periodic solution is not greater than E/cz. In this generality
the bound on the amplitude is the best possible (take a(t) = A, e(t) = E

and 1(t) =0 for all t).
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